Опыт использования UniTesK
Работы над инструментами для поддержки технологии UniTesK начались в конце 1999 года. К тому времени уже было проведено несколько проектов, где технология KVEST использовалась для разработки тестов и регрессионного тестирования крупных промышленных систем компании Nortel Networks, производителя цифрового телекоммуникационного оборудования. Примерами систем Nortel Networks, к которым применялся KVEST были:
-
Ядро операционной системы реального времени (размер около 250 тысяч строк, язык реализации ПРОТЕЛ, близок к С).
-
Система хранения и быстрого поиска сообщений.
-
Утилиты базисного уровня телефонных сервисов.
-
Распределенная система управления сообщениями P2P.
Первой была готова для использования реализация UniTesK для программ на языке C - CTesK. Упрощенный вариант инструментов для поддержки этой технологии был готов к концу 2000 года. К середине 2001 они уже активно использовались в исследовательском проекте по гранту Microsoft Research. Целью проекта было тестирование реализации стека интернет-протоколов нового поколения. IPv6. Кроме того, ставилась задача проверки пригодности UniTesK для тестирования задач нового класса - реализаций телекоммуникационных протоколов. К концу 2001 года проект был завершен. Были найдены серьезные ошибки в реализации, способные привести к нарушению работы произвольного узла в сети на основе IPv6. Поскольку данная реализация тестировалась одновременно несколькими командами тестировщиков в разных странах мира, и никто не обнаружил этих ошибок, была показана высокая результативность UniTesK. В рамках данного проекта был впервые опробован новый механизм тестирования распределенных и асинхронных систем на основе автоматных моделей в виде IOSM.
В 2003 году был проведен пилотный проект применения CTesK для тестиро-вания ПО реального времени (алгоритмы управления навигационными устройствами, ГосНИИАС). Несмотря на сжатые сроки проекта удалось найти серьезную ошибку в алгоритме. В середине 2002 года была готова первая коммерческая версия инструмента J@T, инструмента разработки тестов для Java программ .
Основное же их преимущество в том, что они позволяют автоматически построить оракулы [Parnas,KVEST,ADLt], проверяющие соответствие поведения целевой системы спецификациям, и критерии тестового покрытия, которые достаточно близки к критериям покрытия требований.
Практически невозможно обеспечить универсальный механизм построения единичных тестовых воздействий (например, вызовов операций с разными наборами аргументов), который был бы достаточно эффективен как по времени, затраченному на тестирование, так и с точки зрения достижения высокого тестового покрытия. В то же время, довольно просто построить итератор, перебирающий большое множество значений некоторого типа. Инструменты, поддерживающие UniTesK, предоставляют пользователям библиотеки базовых итераторов значений простых типов, которые могут быть непосредственно использованы для генерации тестовых воздействий, а могут быть скомпонованы в более сложные генераторы. Для уменьшения затрат времени на тестирование сгенерированные тестовые воздействия можно фильтровать, отбрасывая те и них, которые не увеличивают достигнутый уровень покрытия. Фильтры для этого генерируются автоматически из определения критерия тестового покрытия (см. пункт 6).
Для автоматического построения последовательности тестовых воздействий используются модели тестируемой системы в виде конечных автоматов (КА). Тестовая последовательность строится как последовательность обращений к целевым операциям, соответствующая некоторым путям в графе переходов КА, например, обходу всех переходов автомата. Поскольку конечно-автоматная модель используется только для построения тестовой последовательности, а не для проверки корректности поведения целевой системы, осуществляемой оракулами, можно не задавать автомат полностью, а лишь указать способ идентификации его состояний и способ итерации входных воздействий в зависимости от текущего состояния. Представленные таким, неявным, образом автоматы удобно задавать в виде тестовых сценариев. Часто тестовый сценарий можно сгенерировать автоматически на основе спецификации целевых операций, способа итерации наборов их аргументов и стратегии тестирования.
Стратегия тестирования определяет, когда тестирование можно заканчивать. UniTesK предлагает при этом опираться на достигнутый уровень тестового покрытия в соответствии с некоторым критерием покрытия. Из структуры спецификаций, разработанных в соответствии с технологией UniTesK, можно автоматически извлечь несколько таких критериев. Пользователь имеет возможность гибко управлять этими критериями или определять свои собственные.
Чтобы обеспечить более удобную интеграцию в существующие процессы разработки, UniTesK может использовать для представления спецификаций и тестовых сценариев расширения широко используемых языков программирования, построенные на основе единой системы понятий (хотя классические языки формальных спецификаций тоже могут использоваться). Такое представление делает спецификации и сценарии понятнее для обычного разработчика ПО и позволяет сократить срок освоения основных элементов технологии до одной недели. Сразу после этого обучения разработчик тестов может использовать UniTesK для получения практически значимых результатов. Кроме того, использование расширений известных языков программирования вместо специального языка значительно облегчает интеграцию тестовой и целевой систем, необходимую для проведения тестирования. На данный момент в ИСП РАН разработаны инструменты, поддерживающие работу по технологии UniTesK с использованием расширений Java, C и C#.
Спецификации на основе программных контрактов в рамках технологии UniTesK могут использоваться не только как вставки в исходный код целевой системы. Они могут быть отделены от целевого кода и использоваться в неизменном виде для тестирования различных реализаций одной и той же функциональности, таким образом представляя собой формализацию функциональных требований к ПО. Для определения связи между спецификациями и конкретной реализацией используются специальные компоненты, медиаторы, которые могут осуществлять довольно сложные преобразования интерфейсов. Использование медиаторов открывает дорогу следующим возможностям.
-
Спецификации могут быть гораздо более абстрактными, чем реализация, и, тем самым, более близкими к естественному представлению функциональных требований.
-
Спецификации остаются актуальными для нескольких версий целевого ПО. Для переработки тестового набора под новую версию, в которой изменились внешние интерфейсы, но не их функции, достаточно заменить медиаторы. Во многих случаях такая замена может быть автоматизирована.
-
Становится возможным широкое переиспользование спецификаций и тестов, которое значительно повышает отдачу от вложенных в их разработку ресурсов.
При использовании технологии UniTesK в специфической области зачастую бывают нужны не все техники построения тестов из набора входящих в технологию, и не все компоненты из универсальной архитектуры теста бывает необходимо строить. А в некоторых случаях использование каких-то техник невозможно или требует слишком больших затрат. Тем не менее, в этих случаях можно использовать специализированные варианты технологии и поддерживающие их инструменты.
Например, при тестировании блоков оптимизации в компиляторах разработка спецификаций функциональности такого блока в полном объеме, если и возможна, то очень трудоемка, поскольку они должны, например, выражать тот факт, что оптимизация программы действительно была проведена. В то же время, сравнить быстродействие и проверить неизменность функциональности тестовых программ специального вида довольно легко, выполняя их на конечном наборе входных значений, что дает способ построения оракулов, хотя и не столь общий, как описанный выше, но достаточный для практических целей [OPT].
Содержание раздела